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Abstract 

From the Dirac equation with a periodic scalar potential, 
an n-beam dynamical formula for the matrix representa- 
tion of high-energy electron diffraction by a crystal is 
developed. By combining this with the layer-doubling 
method, the diffraction from an assembly of crystal slabs 
having different structures and thicknesses can be 
evaluated. Dynamical calculations of aluminium, copper 
and gold at several accelerating voltages have been 
carried out in a completely parallel manner by the present 
method and the Bethe method derived from the 
relativistic Schrrdinger equation by replacing corrected 
mass and wavelength. The relativistic Schrrdinger 
equation is found to be applicable for n-beam dynamical 
calculations for the Laue case. 

1. Introduction 

Because of the strong scattering of electrons by all but 
the lightest atoms, scattered beams from even a thin 
crystal are sufficiently large to ensure there is consider- 
able multiple scattering, because of which the dynamical 
theory is indispensable for an accurate interpretation of 
electron diffraction. Since Bethe (1928) developed a 
dynamical theory for electron diffraction, the problems of 
the dynamical scattering by a crystal have been tackled 
by many workers (Cowley & Moodie, 1957; Fujimoto, 
1959; Van Dyck, 1980; Watanabe, Kikuchi, Hiratsuka & 
Yamaguchi, 1990). Until now, all theoretical approaches 
may be divided into two groups: those based on the 
layer-by-layer scheme and those on the eigenvalue 
problem for three-dimensional Bloch waves. Correlations 
between these approaches have also been discussed in 
detail (Jap & Glaeser, 1978; Gratias & Portier, 1983). In 
addition, there is a new theory which consists of the 
layer-by-layer and the eigenvalue methods combined 
with the layer-doubling methods (Peng & Whelan, 1990; 
Mitsuishi, Watanabe & Hashimoto, 1994). 

Electrons in a conventional electron microscope travel 
at 55% of the velocity of light at 100kV and at 89% at 
600kV so that the relativistic effect is not far from 
negligible. For such electrons, Fujiwara (1961) pointed 
out, by solving the Dirac equation with the perturbation 
method, that the relativistic Schr6dinger equation might 
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be obtained by the replacements of corrected mass and 
wavelength. The same result was obtained from the 
second-order equation deduced from the Dirac equation 
(Howie; see Fujiwara, 1962). The reliability of the 
relativistic Schrrdinger equation had been confuTned by 
comparison with the extinction distances of aluminium 
(Hashimoto, 1964). In fact, almost n-beam dynamical 
calculations are set up under this relativistic correction. 
However, it is not certain whether any limitation of the 
correction exists or not. 

Gevers & David (1982) derived the first-order 
differential equations for the coefficients in a spinor 
plane-wave expansion of the total wave function from 
the Dirac equation without making any prior approxima- 
tion. However, it is not easy to handle nor does it have 
computer efficiency, and no published studies can be 
found dealing further with the relevant relativistic 
dynamical theory. 

In this paper, a new scheme for the relativistic n-beam 
dynamical theory based on the Dirac equation is 
established. Basically, the idea is to generalize the 
scattering matrix for a spinor plane wave and to derive 
reflection and transmission matrices under an appropriate 
boundary condition. The n-beam dynamical calculations 
for aluminium, copper and gold are carried out by taking 
account of the accelerating voltage. 

2. Theory 

2.1. The dynamical equation 

The Dirac equation for an electron interacting with a 
scalar crystal potential V is given by 

Eap -- Hap = (~tOc + ~mo c2 - eV)ap, (1) 

where c is the light velocity, m 0 the rest mass, 0 the 
momentum operator and - e  the charge of an electron. ~t 
and II are given by 

( 0  ~ i )  i = 1  2 ,3  ' ~i~.  ( i "--'0i/ 
~i = ~i 0 ' ' 0 ' 

where 
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@1- ( 01 01)' @2--( 0i ; i ) ,  @3= (10 _01) ' 

(10) 
i =  0 1 " 

For a free electron with spin up, the wave function is 
given by a plane-wave form: 

lp(z)=N(m~c~;lO)l  )exp(ikzz ), (2) () 0 

where N is the normalization factor, and the wave- 
number vector k and the energy E satisfy the following 
relation: 

E 2 = c2h2k 2 + m2c 4. (3) 

Since a scalar crystal potential V is periodic, it can be 

Next, by multiplication from the left by the matrix A', °/ (i o0 o) 
A' = ". with a' = - 1  0 0 

• 0 1 0 ' a t 
0 0 -1 

(6) can be recast into the form 

hc 

k z 0 ) 

• . {c h 

0 k z 
Dgl Vgl-g2 

Vg2_g I 

(8) 

where 

E - -  V 0 --mo c2 + ich(ky + go) 0 
Dg m°c2 q- icli(ky -4- gy) -E  + V o ch(kx + gx) 

= 0 -ch(kx + gx) E -  V o 
ch(kx + gx) 0 --mo c2 + ich(ky + gy) 

-ch(kx - gx) '~ 
0 ) mo c2 + ich(ky + gy) 

-E  + v o 

expanded in a Fourier series: 

V(r) = y~ V h exp(ihr). 
h 

(4) 

The solution of (1) can be expressed as a linear 
combination of a four-component basis function: 

{~pj(r)} = ~{Cj}gexp[i(k + g)r], (5) 
g 

where { Cj}g is the four-component spinor. 
Substituting (4) and (5) into (1) and following the 

same procedure as in Bethe's eigenvalue method, we can 
easily show that the coefficients (spinors) are obtained by 

[hc(k + g)fi + moc2[i - E] { C j } g -  ~ Vh{Cj}g_h = 0. 

(6) 
In the diffraction problem, an eigenvalue is k z, unlike in 
the band calculation, so this equation cannot be solved 
directly through the eigenvalue problem• In order to 
change this equation into the eigenvaiue problem, it must 
be transformed by the following two steps• First, (6) is 
transformed by the unitary matrix (0 o) 

U ~ •• 

0 fi 

= 1  1 1 - 1  1 

1 - 1  1 1 " 

- 1  1 1 1 

with 

-Vg 0 0 0 ) 
0 -Vg 0 0 

Vg --- 0 0 -Vg 0 " 
0 0 0 -Vg 

Having solved this eigenvalue problem to obtain k z and 
{cj }g, we may write the wave function as 

~p(r) = Exi{Cj}gexp[iO¢ i + g)r], (9) 
g.i 

where X i are the Bloch-wave excitation amplitudes. In 
matrix notation, (9) can be rewritten as 

where 

= U-1C'F(z)x, (10) 

exp(iklz) 0 ... ! ) 

l"(z) = 0 .. . (11) 

0 . . . . . .  exp(iknz) 

With the same boundary condition at z -- ZA and z = zB, 
the wave amplitude vector X is eliminated as follows: 

qffz~) = U-I C' F(zs)F-I (zA)C'-I UII/(ZA) 
= MC'(Za)  

= (  m'l m12)klt(ZA). (12) 
m21 m22 
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Using a proper boundary condition, we can determine the 
unique electron scattering wave function. In other words, 
reflection and transmission coefficients can be evaluated. 

2.2. Boundary conditions 

Now, let us study the scattering case shown in Fig. 1, 
where the wave functions are written as //l°/) } 

~/(ZA) = { Z I c~3hgg ( exp(igg'zZA) 3 g ' °  

\ m--~-+E \ 10) g 

exp  ' zZA  
mo c2 q- E rg.d g 

(13) 

and 

qJ(zs) = c~3hKg ( tg,, ~ exp(iKg'zZs) ' 

mo c2 + E \ tg,d g 

(14) 

In order to separate the electron and positron parts, we 
transform the basis by the unitary matrix. Then (15) can 
be recast into the form 

o R(z~) i)t 
= ( m'll m ~ 2 ) { ( K ~  A) 

\ m ; l  mi2 

+ (/:(ozo) o 
R(-ZA) 

w h e r e  

t - -  

~= 

where rg, u, rg, d, tg,u and tg.d are reflection coefficients and and 
transmission coefficients for spin up and spin down, 
respectively, and s is the coefficient of an incident 
electron. Here, we restrict our discussion to the solution 
for incident beams with spin up. At a boundary, the wave R(z) = 
function must be continuous because of conservation and 
hence reflection and transmission coefficients can be 
combined by using (12)-(14): 

| \tg~/ 
| c~3hKg { tg, exp(iKg'zzs) 

\ m-~--+-E \ tgld ) g 

t0,u N 

to d 

r ~ 
tn.u 
tn ,d 

) 

~2(ZA) [~S 

) / ; r / }  (16) 

F( 

r, 
r, 

\ 

,R 

,d 

,u 

,d 

J 

S ~ 

SO, u 
0 

o 

, ( 1 7 )  

chK~, 0 
E + mo c2 

-chK~, 
0 E + mo c2 

0 

(18) 

chK~,_, 0 
E + mo c2 

-chK~ , 
0 '- E + mo c2 

t exp(iKzz) 0 
0 exp(iKzz) 

• 

• "° 0 

.o ,  

exp(iK ..... ~z) 0 
0 exp(iK ..... i z)  

(19) 
Therefore, the columns for transmission and reflection 

coefficients, that is t and r, can be expanded with the 
so-called transmission and reflection matrices: 

= (  roll ml2) s exp(iKg.zza) 'g.o 
\ m21 m2z 1 

moC + E \ 0 where , - g  

{( " ) }) + -c63hKg ( r~., ~ exp(--iKg.=ZA) . (15) 

mo c2 + E rg'd / g and 

K(ZB)t "- TK(ZA)S ( 2 0 )  

R(--ZA)F-'- kK(ZA)S , ( 2 1 )  

7" = {(m'~ - rn'~2/~)-' - (m~ - m~2/~)-'/3 } 

x {(m'~, - m'~z~)-'(m'l, + m'12/3) 

- (m~l - m~2/3)-l(m~l + m~2/3)} (22) 
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/~ -- {(m'll --  m'12/~ ) - - /~ -1 (m; l  -- m~2/~)} -1 

x {p- l (ml l  Jr- m'z2P) - -  (m]l -- m'12/5)}. (23) 

For the case where the incident electrons come from the 
reverse side, reflection and transmission matrices can 
also be evaluated in the same manner. Thus, reflection 
and transmission matrices for a combined system of two 
slabs can be calculated with the layer-doubling method 
as shown in Fig. 2 (Nagano, 1990). Therefore, the 
diffraction from an assembly of crystal slabs having 
different structures and thicknesses is easily calculated by 
this scheme without any serious problems. 

3. R e s u l t s  

The n-beam dynamical calculations are evaluated by 
taking account of the atomic number of the materials and 
the accelerating voltages in this calculation. The crystal 
potentials are constructed from superposing free atoms 
(Doyle & Turner, 1968). In order to investigate how the 
beam number affects the diffraction intensities, (100) 

n-beam dynamical calculations for the present method 
are compared with the relativistically corrected Bethe 
method. Figs. 3-5 show the thickness series for 
a luminum,  copper and gold at 100, 400 and 600kV. 
The present method and the corrected Bethe method are 
superimposed everywhere at 100, 400 and 600kV 
irrespective of atomic number and 121 beams are enough 
for convergent (100) n-beam dynamical calculations. The 
results for 121 beams are also in good agreement with the 
other methods (Van Dyck, 1980; Watanabe e t  al. ,  1990; 
Mitsuishi e t  al. ,  1994). 

4. C o n c l u d i n g  r e m a r k s  

A general scheme has been proposed for the dynamical 
theory of fast electron diffraction on the basis of the 
Dirac equation, in which the scattering matrix is 
combined with the layer-doubling method. Thus, it can 
be applied not only to multilayer materials but also to 

A1 

K 

-K 

-(K+g n) 

k l ~ k  n 

c r y s t a l  
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zA zB 
Fig. 1. Schematic view of the electron scattering. 

R A B  - 

T B - ~  B 

~'AB- 
Fig. 2. Schematic view of the layer-doubling method. 
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Fig. 3. Beam intensities of 000 for aluminium at 100, 400 and 600kV. 

Solid curves: present method with 121 beams. Dashed curve: present 
method with 25 beams. Dotted curve: present method with 9 beams. 
Circles: Bethe method with 121 beams. Crosses: Bethe method with 
25 beams. Triangles: Bethe method with 9 beams. 
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Fig. 4. Beam intensities of 000 for copper at 100, 400 and 600 kV. Solid 

curve: present method with 121 beams. Dashed curve: present 
method with 25 beams. Dotted curve: Present method with 9 beams. 
Circles: Bethe method with 121 beams. Crosses: Bethe method with 
25 beams• Triangles: Bethe method with 9 beams. 
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Fig. 5. Beam intensities for 000 for gold at 100, 400 and 600kV. Solid 
curve: present method with 121 beams. Dashed curve: present 
method with 25 beams. Dotted curve: present method with 9 beams. 
Circles: Bethe method with 121 beams. Crosses: Bethe method with 
25 beams. Triangles: Bethe method with 9 beams• 

isolated defects by using the periodic continuation 
approximation (Fields & Cowley, 1978). This method 
also has the advantage of  a linear system, thus being 
easily extended to RHEED calculations without any 
problems, unlike the Bethe method (Kambe, 1988; Ma & 
Marks, 1989). Furthermore, it turns out that the 
Schr td inger  equation with relativistically corrected 
mass and wavelength is applicable for n-beam dynamical  
calculations under the small-angle approximation. 
Although reductions of  computing time and memory  
are achieved in comparison with a system of first-order 
differential equations derived from the Dirac equation 
(Gevers & David, 1982) and the Schrtidinger equations 
(Maksym & Beeby, 1981; Ichimiya, 1983; Zao, P o o n &  
Tong, 1988), the matrix size is four times larger than for 
the Bethe method. However, the matrix size can usually 
be reduced by group theory and is not a serious problem 
with today 's  advanced computers. It promises to be a 
good starting point to discuss the relativistic effect of  
high-energy electron diffraction. 
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